Contents lists available at ScienceDirect

Bioorganic & Medicinal Chemistry Letters

journal homepage: www.elsevier.com/locate/bmcl

Non-nucleoside inhibitors of HCV polymerase NS5B. Part 3: Synthesis and optimization studies of benzothiazine-substituted tetramic acids

Javier de Vicente a,*, Robert T. Hendricks a, David B. Smith Jay B. Fell John Fischer b, Stacey R. Spencer b, Peter J. Stengel ^b, Peter Mohr ^b, John E. Robinson ^b, James F. Blake ^b, Ramona K. Hilgenkamp ^a, Calvin Yee ^a, Junping Zhao ^a, Todd R. Elworthy ^a, Jahari Tracy ^a, Elbert Chin ^a, Jim Li ^a, Al Lui ^a, Beihan Wang ^a, Connie Oshiro a, Seth F. Harris a, Manjiri Ghate a, Vincent J. P. Leveque a, Isabel Najera a, Sophie Le Pogama, Sonal Rajyaguru^a, Gloria Ao-Ieong^a, Ludmila Alexandrova^a, Bill Fitch^a, Michael Brandl^a, Mohammad Masjedizadeh a, Shao-yong Wu a, Steve de Keczer a, Tatyana Voronin a

ARTICLE INFO

Article history: Received 7 June 2009 Revised 4 August 2009 Accepted 5 August 2009 Available online 8 August 2009

Keywords: Benzothiazine HCV NS5R Time dependent inactivation CYP 3A4 Clearance Tetramic acid

ABSTRACT

Benzothiazine-substituted tetramic acids were discovered as highly potent non-nucleoside inhibitors of HCV NS5B polymerase. X-ray crystallography studies confirmed the binding mode of these inhibitors with HCV NS5B polymerase. Rational optimization of time dependent inactivation of CYP 3A4 and clearance was accomplished by incorporation of electron-withdrawing groups to the benzothiazine core.

© 2009 Elsevier Ltd. All rights reserved.

Hepatitis C virus (HCV) was first characterized in 1989 as the major cause of non-A and non-B hepatitis infections. An estimated 3% of the global human population is infected by HCV, the leading cause of chronic liver disease and liver transplants.² Currently approved therapies involve pegylated interferon- α -2a as a single agent or in combination with ribavirin. These therapies provide a sustained virological response in approximately 50% of patients infected with genotype 1, and have the disadvantage of frequent and severe side effects.3 The HCV RNA-dependent RNA polymerase, NS5B is a well characterized enzyme, essential for viral replication, with no known mammalian equivalent, and thus represents an attractive target for the development of novel anti-HCV agents.⁴

Previous work described our lead optimization studies of benzothiazine-substituted quinolinedione series as non-nucleoside inhibitors of HCV NS5B polymerase.⁵ While compounds such as 1 were found to be potent inhibitors of HCV polymerase both in enzymatic and replicon assays (Fig. 1), they suffered from poor exposure after oral administration due to low solubility. Thus, we

sought to reduce the planarity of compounds such as 1 by replacing the quinolinedione ring by a non-planar chiral tetramic acid **(2**).

Herein, we report a novel series of inhibitors of HCV polymerase in which the quinolinedione ring is replaced by a C-tert-butyl substituted tetramic acid leading to benzothiazine-substituted tetramic acids.^{6,7} In the present study, we focused on optimization of lead structure 2 via substitutions of the benzothiazine ring and modulation of the lipophilic substituent.

The synthesis of these compounds commenced from 6-nitrobenzothiazole 5 (Scheme 1). The thiazole ring of 5 was opened

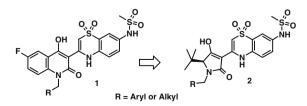


Figure 1. Previous lead compound 1 and novel tetramic acid congener.

^a Roche Palo Alto LLC, 3431 Hillview Avenue, Palo Alto, CA 94304, USA

^b Array BioPharma Inc, 3200 Walnut Street, Boulder, CO 80301, USA

^{*} Corresponding author. Tel.: +1 6508555632; fax: +1 6508556908. E-mail address: javier.devicente@roche.com (J. de Vicente).

Scheme 1. Reagents and conditions: (a) NaBH(OAc)₃, RCHO, DCM, AcOH, rt; (b) KOH, EtOH, $100\,^{\circ}$ C; (c) EtO₂CCH₂COCH₂Cl, AcOH, AcOEt, $70\,^{\circ}$ C; (d) KMnO₄, HCOOH, acetone, THF, $0\,^{\circ}$ C, 90%; (e) LiOH, THF, $0\,^{\circ}$ C; (f) DIC, DMF, $25\,^{\circ}$ C; (g) KOtBu, EtOH, $25\,^{\circ}$ C; (h) H₂, Raney-Ni, $25\,^{\circ}$ C; (i) MsCl, Py, $25\,^{\circ}$ C.

under basic conditions and then doubly alkylated by treatment with ethyl 4-chloroacetoacetate, providing the benzothiazine core as a 1:1 mixture of exocyclic olefin isomers **6**. After selective sulfur oxidation with potassium permanganate, the ester was carefully hydrolyzed with lithium hydroxide at low temperature to prevent acid decarboxylation. The benzothiazine-substituted acetic acid fragment **7** was coupled to L-tert-butylglycine butyl ester derivatives **4**, which was readily obtained by reductive alkylation of **3**.8 A Dieckman condensation of ester **8** led to the backbone structure of the benzothiazine-substituted tetramic acid scaffold (**9**). Reduction of the nitro group with Raney-nickel was followed by treatment with methanesulfonyl chloride in pyridine, leading to functionalized benzothiazine-substituted tetramic acids **10**.

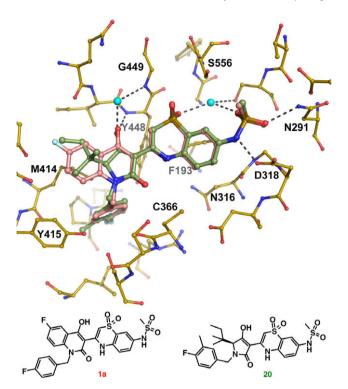
The replacement of the original quinolinedione by a tetramic acid could change the orientation of the benzyl lipophilic group. Thus, our original plan was directed toward the optimization of this substituent. The in vitro data of this study are reported in Table 1. The in vitro potency was measured against the NS5B enzyme⁹ and in an HCV subgenomic replicon (GT-1b)^{10,11} cell based assay in the presence of 5% fetal bovine serum (FBS). The effect of protein binding on the inhibitors potency was evaluated in the HCV subgenomic replicon cell based assay where 40% human serum (HS) is added.

Fluorine substitution at the para position of the phenyl ring provided a threefold improvement in replicon potency (compare 11 and 12, Table 1). Addition of small groups such chloro (13), methyl (14) or methoxy (15) at the meta position maintained or increased enzyme and replicon potency, but these groups had a detrimental effect on the compound potency in the replicon assay performed in the presence of 40% HS. The installation of an additional fluorine group at the ortho position (compound 16) did not improve potency. With the aim to reduce protein binding of 16 by adding polarity, an isosteric pyridyl replacement (17) was evaluated, but did not provide any improvement. The isoamyl group (18) is equipotent with the *p*-fluorobenzyl (12), though losses potency in the presence of HS. To our surprise, the replacement of the isopropyl group by a *tert*-butyl group enhanced the replicon potency and reduced protein binding (compare compounds 18 and 19).

To better understand the interactions of the different benzothiazine inhibitors with the NS5B protein, a co-crystal structure of compound **20** complexed with the enzyme was obtained (Fig. 2).^{12,13} Analysis of this structure, overlapped with a benzothi-

Table 1
Enzyme and replicon data for benzothiazine-substituted tetramic acid derivatives 11–

C1-	n	Poplicon EC ab (124)			
Compds	R	NS5B IC_{50}^{a} (μ M)	Replicon EC ₅₀ ^{a,b} (μM)		
			5% FBS	40% HS (FS) ^c	
11		0.008	0.032	0.139 (4.3)	
12	F-	0.007	0.012	0.033 (2.7)	
13	F	0.005	0.009	0.163 (18.1)	
14	F	0.003	0.012	0.122 (10.2)	
15	F MeO	0.004	0.028	0.422 (15.1)	
16	F-F	0.013	0.035	0.226 (6.5)	
17	FN	0.042	0.201	1.718 (8.5)	
18	~	0.005	0.03	0.66 (22)	
19	1	0.008	0.016	0.065 (4.1)	


 $^{^{\}rm a}$ IC $_{\rm 50}$ and EC $_{\rm 50}$ values for inhibition calculated from two independent determinations.

azine-substituted quinolinedione (**1a**), illustrates the similarities between these two scaffolds. Both the quinolinedione and tetramic acid are expected to have an ionized hydroxyl group (**1a** cpKa 4.77, **20** cpKa 5.89) interacting with the backbone NH of Tyr448 and a conserved water molecule. As predicted, the methyl *tert*-butyl group interacted with the surface of Met555 in a region previously filled with a substituted phenyl ring on the quinolinedione scaffold. The position of the methyl sulfonamide interacting with Asp318 and Asn291 and the location of the lipophilic tail were nearly identical with **1a**.

Tetramic acid **12** achieved our objective of very good potency in the serum shifted HCV replicon assay and was selected for PK

 $^{^{\}rm b}$ CC50 >50 μM for all analogues.

^c EC₅₀ fold-shift values (40% human serum/5% FBS) shown in parentheses.

Figure 2. X-ray crystal structure overlap of compounds **20** and **1a** bound to the palm site of $C\Delta 21$ NS5B polymerase.

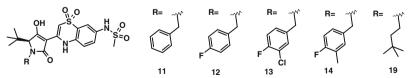
studies. In vivo oral rat PK data of **12** showed slow absorption ($T_{\rm max}$ = 1.3 h) and high clearance (iv Cl = 101 mL/kg/min) resulting in low exposure (AUC = 189 ng × h/mL, 5 mg/kg dose). Despite this poor exposure, compound **12** displayed a moderate oral bioavailability (22%) in rats. To better understand the high clearance, the data in Table 2 were collected. We measured rat iv clearance and microsomal stability of other potent analogues that also showed reasonable permeability (Table 2). These closely related analogues showed rat iv clearance that did not correlate to in vitro microsomal stability. In order to unravel the mechanism of clearance, benzothiazine **12** was C-14 radio-labeled at the stable methyl sulfonamide carbon and then dosed iv in rat. To our surprise, benzothiazine **12** was cleared mainly via biliary excretion, with ~90% of the C-14 radio-label recovered from rat bile with ~70% as unchanged parent.

Our off target screening also revealed that these compounds caused time dependent inactivation (TDI) of CYP 3A4. A metabolite ID study of **12** showed primarily metabolic oxidation at the

Figure 3. In vitro metabolites (21a and 21b) of compound 12 and their corresponding TDI values.

Table 3
Enzyme, replicon and TDI data for C-7 substituted benzothiazine derivatives 12, 22–24

Compds	R	NS5B IC ₅₀ ^a (μM)	Replicon EC ₅₀ ^{a,b} (μΜ)	TDI 3A4 (%)
12	NHSO ₂ Me	0.007	0.005	41
22	F	0.338	1.87	7.6
23	CN	1.2	6.85	10.9
24	NO ₂	1.8	16.5	0.4


 $^{^{\}rm a}$ IC $_{\rm 50}$ and EC $_{\rm 50}$ values for inhibition calculated from two independent determinations.

tert-butyl group leading to alcohol **21a** (Fig. 3). In vitro debenzylation **(21b)** was also detected.

Both metabolites **21a** and **21b** were synthesized and shown to still display TDI signals (Fig. 3). The TDI liability was attributed to phase I metabolism associated with either the 1,4-diaminophenyl or the olefin functionality present in the C7-methylsulfonylamino substituted benzothiazine scaffold. To test this hypothesis, a series of C-7 substituted benzothiazines were evaluated (Table 3). Interestingly, a reduction in the electron density of the benzothiazine ring by incorporation of electron-withdrawing groups at the C-7 position led to a significant reduction in TDI (**22–24**).

 Table 2

 In vitro permeability, rat microsomal stability, iv clearance, and TDI data for selected compounds following single dose administration to rats

Compds	Caco-2 A to B (ER) ^a	PAMPA (cm/sec×10 ⁻⁶)	RLM ^b (μL/min/mg)	Cl ^c (mL/kg/min)	TDI 3A4 (%)
11	0.5 (11)	1.8	nd	144	19
12	0.2 (25)	1.4	32	101	41
13	_	0.98	84	86	41
14	_	1.62	327	101	39
19	0.2 (14)	1.8	79	>100	23

^a Caco-2 assay run for 21 days. Efflux ratio, ER = (B-to-A)/(A-to-B).

b CC50 >50 M for all analogues.

b RLM: in vitro liver microsomal data.

^c Rat PK study: dose iv = 2 mg/Kg.

Scheme 2. Reagents and conditions: (a) TsCN, pyridine, $0 \, ^{\circ}$ C, 24%; (b) 1 N HCl, THF, rt, 15%; (c) Ac₂O, pyridine, 25 $^{\circ}$ C, 6%; (d) CF₃SO₂Cl, pyridine, $0 \, ^{\circ}$ C, 43%; (e) CH₂O, MeCN, rt, then NaCNBH₃, rt, 41%; (f) H₂, Raney-Ni, 25 $^{\circ}$ C, 48%; (g) MsCl, Py, 25 $^{\circ}$ C, 72%.

To further test our TDI hypothesis by blocking likely metabolism at the C2-C3 double bond, small groups such a Cl (25), Me (26) and CN (27) were introduced at the C-2 position of the benzothiazine ring. The synthesis of C-2 substituted benzothiazine compounds **25–29** is shown in Scheme 2.¹⁴ The C2–C3 double bond was found to be reactive towards electrophiles. The nitrile group was installed by a direct electrophilic addition of tosyl cyanide to fully elaborated benzothiazine 12. Nitrile 27 was then converted to the corresponding primary amide 29 by acid hydrolysis. The acetyl and chlorine groups were incorporated at the C-2 position similarly by reaction with acetic anhydride and trifluoromethylsulfonyl chloride respectively. With the aim to install a methyl group at the 2 position, benzothiazine 12 was reacted with methyl iodide, but the methyl group was incorporated at the thiazine nitrogen instead. In light of this result, intermediate 9a was selectively methylated at the C-2 position upon treatment with formaldehyde followed by sodium cyanoborohydride. The nitro group was then converted to the desired methyl sulfonamide **26** as described previously.

Incorporation of these groups maintained replicon potency (Table 4), even as C-2 was extended to bigger electron-withdrawing groups such as acetyl (28) and carboxamide (29). However, these groups only somewhat reduced the TDI signal. In order to block possible metabolism at the C-4 nitrogen, a fluorine atom was incorporated at the C-5 position of the benzothiazine, which led to a noted reduction in TDI (30). Furthermore, the incorporation

Table 4Enzyme, replicon, TDI and clearance data for benzothiazine-substituted tetramic acid derivatives **25–35**

Compds	R ¹	R ²	NS5B IC ₅₀ ^a (μM)	Replicon EC ₅₀ ^{a,b} (μM)	TDI 3A4 (%)	Cl ^c (mL/ kg/min)
12	Н	Н	0.007	0.005	41	101
25	Cl	Н	0.002	0.004	31	nd
26	Me	Н	0.01	0.078	21.9	nd
27	CN	Н	0.006	0.016	24.7	nd
28	MeCO	Н	0.004	0.02	15.1	nd
29	NH ₂ CO	Н	0.011	0.016	17.8	5
30	Н	F	0.009	0.036	8.5	36

 $^{^{\}rm a}$ IC $_{\rm 50}$ and EC $_{\rm 50}$ values for inhibition calculated from two independent determinations.

of a carboxamide at C-2 (**29**), or a fluorine at C-5 (**30**), ¹⁴ of the benzothiazine template also had a beneficial effect on iv clearance.

In conclusion, we have described a novel series of benzothiazine-substituted tetramic acids as non-nucleoside inhibitors of HCV polymerase NS5B. An initial structure-activity relationship was established for this new class of compounds and their binding mode was confirmed by X-ray crystallography. Our initial lead structure 12 showed an inhibitory activity of 33 nM in our serum shifted replicon assay. This compound suffered from high time dependent CYP3A4 inactivation and biliary clearance. These liabilities were successfully optimized by incorporation of electron-withdrawing groups at the C-2 and C-5 positions of the benzothiazine ring. A reduction of electron density in the thiazine ring simultaneously altered biliary transporter recognition and reduced formation of reactive metabolites while still retaining good cellular potency, as demonstrated by analogues 29 and 30.

Acknowledgments

The authors thank Drs. Eric Sjogren, Hans Maag, and John Josey for their support and helpful discussion during the course of this work.

References and notes

- Choo, Q. L.; Weiner, A. J.; Overby, L. R.; Bradley, D. W.; Houghton, M. Science 1989, 244, 359.
- For a review of HCV epidemiology, pathogenesis, and clinical treatment, see:

 (a) Lauer, G. M.; Walker, B. D. N. Engl. J. Med. 2001, 345, 41;
 (b) Di Bisceglie, A. M. Lancet 1998, 351;
 (c) Alter, M. J.; Kruszon-Moran, D.; Nainan, O. V.; McQuillan, G. M.; Gao, F.; Moyer, L. A.; Kaslow, R. A.; Margolis, H. S. N. Engl. J. Med. 1999, 341, 556.
- Manns, M. P.; McHutchison, J. G.; Gordon, S. C.; Rustgi, V. K.; Shiffman, M.; Reindollar, R.; Goodman, Z. D.; Koury, K.; Ling, M.-H.; Albrecht, J. K. Lancet 2002. 347, 975.
- Koch, U.; Narjes, F. Curr. Top. Med. Chem. 2007, 7, 1302; Rönn, R.; Sandström, A. Curr. Top. Med. Chem. 2008, 8, 533; Zapf, C. W.; Bloom, J. D.; Levin, J. I. Ann. Rep. Med. Chem. 2007, 281. see also references therein.
- De Vicente, J.; Hendricks, R. T.; Smith, D. B.; Fell, J. B.; Fischer, J.; Spencer, S. R.; Stengel, P. J.; Mohr, P.; Robinson, J. E.; Blake, J. F.; Hilgenkamp, R. K.; Yee, C.; Adjabeng, G.; Elworthy, T. R.; Tracy, J.; Chin, E.; Li, J.; Wang, B.; Bamberg, J. T.; Stephenson, R.; Oshiro, C.; Harris, S. F.; Ghate, M.; Leveque. V.; Najera, I.; Le Pogam, S.; Rajyaguru, S.; Ao-leong, G.; Alexandrova, L.; Larrabee, S.; Brandl, M.; Briggs, A.; Sukhtankar, S.; Farrell, R.; Xua, B. Bioorg. Med. Chem. Lett. 2009. doi: 10.1016/j.bmcl.2009.05.
- (a) Blake, J. F.; Fell, J. B.; Fischer, J. P.; Fischer, J. P.; Hendricks, R. T.; Robinson, J. E.; Spencer, S. R.; Stengel, P. J. U.S. Patent Application 2006/040927, 2006.; (b) Fell, J. B; Mohr, P.; Stengel, P. J. PCT Int. Appl. 2007/093541.
- (a) Evans, K. A.; Chai, D.; Graybill, T. L.; Burton, G.; Sarisky, R. T.; Lin-Goerke, J.; Johnston, V. K.; Rivero, R. A. Bioorg. Med. Chem. Lett. 2006, 16, 2205; (b) Fitch, D. M.; Evans, K. A.; Chai, D.; Duffy, K. J. Org. Lett. 2005, 7, 5521.
- The enantiomeric purity of these compounds was retained through the synthetic sequence.
- For a detailed description of the enzyme assay see: Ma, H.; Jiang, W.-R.; Robledo, N.; Leveque, V.; Ali, S.; Lara-Jaime, T.; Masjedizadeh, M.; Smith, D. B.; Cammack, N.; Klumpp, K.; Symons, J. J. Biol. Chem. 2007, 282, 29812.
- For a detailed description of the replicon assay see: Klumpp, K.; Leveque, V.; Le Pogam, S.; Ma, H.; Jiang, W.-R.; Kang, H.; Granycome, C.; Singer, M.; Laxton, C.; Hang, J. Q.; Sarma, K.; Smith, D. B.; Heindl, D.; Hobbs, C. J.; Merrett, J. H.; Symons, J.; Cammack, N.; Martin, J. A.; Devos, R.; Najera, I. J. Biol. Chem. 2006, 281, 3793.
- 11. A representative number of benzothiazine-substituted tetramic acids (11, 12, 14, 16, 27, 29, 30) were also evaluated in a GT-1a replicon assay. This class of compounds had a minimal loss in inhibitory activity of four to 10-fold relative to our standard GT-1b replicon assay.
- 12. Atomic coordinates of the structure 20 bound to CΔ21 NS5B polymerase were deposited with the RCSB Protein Data Bank (PDB) under the accession code 3H59. The crystal structure was determined following previously described procedures: Le Pogam, S.; Kang, H.; Harris, S. F.; Leveque, V.; Giannetti, A. M.; Ali, S.; Jiang, W.; Rajyaguru, S.; Tavares, G.; Oshiro, C.; Hendricks, T.; Klumpp, K.; Symons, J.; Browner, M. F.; Cammack, N.; Najera, I. J. Virol. 2006, 80, 6146.
- 13. Compound 20 was the only compound in this series that provided a high resolution crystallographic data. This analogue is closely related to compound 14 but with the addition of an extra methyl group at the *tert*-butyl group. This modification had minimal impact in enzyme and cell activity: compound 20 NS5B IC₅₀ 0.013 μM; replicon EC₅₀ 0.024 μM.
- 14. The synthesis of C-5 fluoro substituted benzothiazine 30 was accomplished following the sequence shown in Scheme 1 but starting from 4-fluoro-6-nitrobenzothiazole.

b CC50 >50 M for all analogues.

^c Rat PK study: dose iv = 2 mg/Kg.